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SUMMARY 

Two effects give rise to osmosis in a permeable membrane: the coupling effect 
between the ion streams and water, demonstrated by binary isotonic osmosis, and the 
osmotic difference between the outside solutions. But, in contrast to a semipermeable 
membrane, it is not the difference in the outside concentrations but the difference in 
the Donnan ions inside the membrane that produces the flux of water. 

OSMOTIC PRESSURE 

If a semipermeable membrane sepirates a ‘solution from the pure solvent in 
an osmotic cell, a flux of water runs from the solvent into the solution. This flux is 
caused by the lower vapour pressure of the solution. On the other hand, the flux 
entering a closed osmotic cell gives rise to a hydrostatic pressure, which causes an 
increase in the vapour pressure of the solution and diminishes the decrease that arises 
from the solute. A state of eqililibrium is reached if the vapour pressure has the same 
value on both sides of the membrane. This fact can be expressed by the equation 

&=& f VLP (1) 

which states that the chemical potential, ,u(c& of the pure solvent on one side of the 
membrane must be equal to the chemical potential, ,uE’ + V,P, on the other side. 
Therefore, ,uf’ represents the chemical potential of the water in a solution in the ab- 
sence of a pressure (superscript zero) and V,P is an additional potential originating 
from the (hydrostatic) pressure P ( VL = molar volume). 

Until equilibrium is reached, ~2 > cl:’ + VL P and a flux of water from the 
higher to the lower potential is the result, Restricting the situation to a “strip dx”, 
i.e., a section of a membrane, Fick’s first law can be written as 

.L/q = -&I grad (& + Vr. p) (2) 

where DH is the hydrodynamic permeability and q the cross-section of the membrane. 
Setting j, =, 0, we obtain 

d,uu”L = VL dP (3) 
where 

d,u; = f4! -& 
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The hydrostatic difference dP (in the strip, d-u) which corresponds to the osmotic 
difference d,ut between the pure solvent and the solution is called the osmotic pressure 
difference, dP,,. 

OSMOSIS 

In addition to semipermeable membranes, there are permeable membranes 
which are permeable for the solute also. In contrast to the semipermeable membranes, 
where the flux of solvent always runs in the direction of the osmotic gradient, we 
frequently observe in the case of permeable membranes a flux of water opposed to 
this gradient. Employing a pig’s bladder to separate a concentrated solution of sali- 
cylic acid from pure water, both the salicylic acid and the water pass through the 
membrane in the same direction from the solution into the pure solvent. Surprisingly, 
the flux of water is 10,000 times greater than the flux of salicylic acid. 

Effects in which water fluxes are opposed to the osmotic gradient are termed 
anomalous negative osmosis. In order to explain this behaviour, Graham’ suggested 
that these effects originate from electric potentials. 

ELIMINATION OF THE OSMOTIC PRESSURE: ISOTONIC OSMOSIS 

In order to separate the flux of water originating in the osmotic difference 
from the flux, presumably caused by an electric potential, we used isotonic solutions, 
i.e., solutions of different composition but equal activity of water. Our experiments 
were performed with membranes of condensed phenolsulphonic acid and binary 
isotonic mixtures of HCI with different alkalimetalchloridesz. Although there was no 
osmotic difference, d;LL, between the solutions bordering the boundaries of the mem- 
brane, strongfluxcs-of water, j L, were observed. Using small concentrations, the flux 
of water increases proportionally to the ion fluxes and the ratio j,/j, is given in 
Table 1. However, on increasing the total concentration, c, the flux of water reaches 
a maximum and changes sign at c > 4n (ref. 3) (see Fig. 1). In these experiments, 
pure solutions of HCI were used on one side of the membrane and mixtures of HCI 
and LiCl on the other side. By changing the H+ : Li+ ratio, a more or less steep gra- 
dient, n c,,/dx, which isthe parameter of the family of curves in Fig. 1, was produced 
in the membrane. A surprising result was the independence of the inversion point 
on n c,,/dx and on stirring of the solutions (plotted curve). This behaviour is explained 
in a further section on isotonic osmosis below. 

APPLICABILITY OF THEORIES 

While there is no lack of theories of osmosis, we have found no theory that is 
in accordance with our experiments. A large number of theories are based on an ar- 
rangement of the thermodynamics of irreversible processes (T.I.P.)j: 

k 
jl =xLlkXk (i= 1.2, . . . N) (4) 

where the unknown streamsj, are linear functions of arbitrary forces represented by 
X, and &k are coefficients obeying the OnSager reciprocal relationship &k = L,,,. 
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Fig. 1. Isotonic osmosis at higher concentrations. Water flux as a function of the concentration’ 
System: LiCl + HCI-HCI. Parameter: concentration gradient. 

0.671- ‘VJ - 

AC/AX :I40 

Unrestricted confidence in the reciprocal relations can give rise to a failure of such 
theories. As stated by Gyarmati 5, the Onsager relations do not need to be valid in 
the case of constraints. An example of a constraint is the condition 

.Z z? Fj, = 1 (5) 

which states that the electric current, I, is given by the number of elementary charges, 
zf F (F = Faraday constant), carried away with the ion fluxes. When 1= 0, eqn. 5 
is called the condition of electroneutrality, which gives rise to an electric field (Nernst’s 
diffusion potential). As this field is not an independent and arbitrary force, it 
cannot be used on the right-hand side of eqn. 4. 

The consequence of the above is that eqn. 4 and the Onsager equation can no 
longer be used and another principle must be sought. As all transport processes obey 
a variational principle (Fermat’s principle of least time is the classical example) we 
have used this method to obtain correct equations of transport. 

BRAUN-LE CHATELIER PRINCIPLE 

The complete deduction of all transport equations requires an exhaustive 
knowledge of the calculus of variations. As such a procedure exeeds the scope of this 
paper, we give a short explanation of two equations which we have deduced else- 
where6. 

If in a solution two fluxes j, and j, flow in opposite directions through a mem- 
brane, an interaction with the solvent (water) takes place. The water evades the con- 
straint originating from the frictional interaction and moves so as to reduce the force 
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exerted on it to 
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a minimum. In this case, the flux of water is given by the equation 

z&.it/z& C’I (6) 

if R, is the frictional coeficient of the ion i. 
Imagining that the particles are electrically neutral and RI > R2, the force K, 

necessary to transport particle 1 through the membrane must be greater than the force 
Kr exerted on particle 2. In this case, a difference dK = Kr - K2 is the result. But in 
the case of ions, an electric field 

cF F grad t-p = - ._!_ 
29 c Ri .i, (7) 

takes place and the result is that the difference dK disappears. This unexpected result 
is a consequence of the Braun-Le Chatelier principle of least constraint. 

Comparing eqns. 6 and 7, the electric field as well as the flux of water can be 
expressed by the term Z R, j,, which results in a formal connection between the 
osmosis and the electric field (eqn. 7). However, we cannot conclude from this fact 
that the osmosis arises from an electric field. 

FURTHER CONSIDERATION OF ISOTONIC OSMOSIS 

Eqn. 6 was used to evaluate the results of our experiments, presented in Table 
I. The frictional coefficients recorded in Table I were determined with the aid of re- 
verse osmosis2 by pressing the pure solvent through the membrane charged with 
ions I and 2. In addition to the ratio (f?, - R,)/(R, + A,), Table I gives the corre- 
sponding ratios of the ion mobilities. II and /2, in solutions which do not differ 
essentially from the ratio found in the membrane. The last column gives the ratiofof 
the experimentally determined fluxes of water and the values calculated from eqn. 6. It 
is not clear whether there is a systematic error or an actual deviation from theory. 

Tn order to understand the inversion of the water flux, it can be noted that 
eqns. 6 and 7 are valid for an arbitrary number of particles, N. In the case of the 
sotonic osmosis presented in Fig. I, there are three particles, H+, Li+ and Cl-, 

TABLE I 

ISOTONIC OSMOSIS AT LOW CONCENTRATIONS 

Comparison of experimental and theoretical jr_&, values. 
_...~..._.. 

Systenr jLh RI - Rz 12 - I, CLICF jLlh 
(cxptl.) 

.._ _. _ _ - 
RI i- R2 12 -I- I! ~tAr?or.) 

- ---.. _.. ---.-- -. _--.... _- ..-. -- ..__. .._-. -_.- _._. -.._ .._.. -. .._ .._.._... -..-_ ____-- .._ 

Li-H 6.70 0.76 0.81 18.6 3.5 
Na-H 4.80 0.57 0.76 16.3 2.3 
K-H 3.60 0.47 0.67 16.0 1.9 
Li-K 2.10 0.45 0.32 (13.0) 1.5 
Na-K 1.40 0.14 0.19 (11.5) 0.4 
NH&-K 0.02 - 0.00 - - 
_-._.-_._--._--..-. ..__.. _-... . .._ - _. ___.. __. _-....... _.._... --_.. .-. 

.~_. 
/ 

_.__ ~.__ .-_ 
0.52 
0.48 
0.52 
0.71 
0.20 
- 
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from which result the fluxes jH+ and jr_,+ of the counter ions and j,,,, andj‘,c, of the 
Donnan ions. Eqn. G must be written in this case as 

Using low outside concentrations, the Donnan fluxes can be ignored and osmosis 
flows in the direction of the Li+ flux, as R,_,+ > RH+. Increasing the outside concen- 
trations, a flux of Donnan ions takes place. As the experiments have shown3, a strong 
flux of HCl arises, whereas the flux of LiCl can be ignored. This behaviour results 
from the well known fact that the mobility of H+ is more than ten times greater than 
the mobility of Li +. To this flux, the second term on the right-hand side of eqn. 8 is 
coordinated and as the flux j,,- together with flux ja + is opposed to the flux jLI+, 
inversion of the osmosis takes place with an increasing concentration of Donnan 
ions. The independence of the inversion point on the parameter dc/dx follows from 
the fact that at this point the electric potential disappears and all fluxesj, are depen- 
dent on dc/dx only. Having j, = 0, we can divide both sides by dc/dx and obtain an 
equation that is independent of dc/dx at the inversion point. The osmotic inversion 
demonstrates that the electric field coordinated to the osmosis flux (see eqns. 6 and 7) 
is not Nernst’s diffusion potential as assumed by Schliigl’. This is a consequence of 
the fact that grad v changes sign without the frictional coefficients or the gradients of 
chemical potentials changing sign, as would be necessary in the case of a diffusion 
potential. 

ELECTROKINETIC RELATIONSHIPS 

While on the one hand there is no agreement between our own results and 
those of prior concepts involving osmosis, on the other hand the investigations of 
Schmid6 on electrokinetic effects completely support our results. 

Taking into consideration the definition 

D,! = - c&‘R,q 

and restricting eqns. G and 7 to a single ion i = 1, we obtain 

jr. 
-= -D,cFFgrad rp 

(I 

(9) 

where D,, represents the hydrodynamic permeation, which is inversely proportional 
to the frictional coefficient. This equation, involving the correct coefficient cFF, was 
first found by Schmids. 

A result of our theory is the following simple electrokinetic relationship. If 
any solution passes a sintered glass under the influence of a hydrostatic pressure, the 
velocities 1~~ and I*,_ of the solute i and solvent L fulfil the obvious relationship 

I’Jl’, = I (11) 
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If the sintered glass is replaced by a cation-exchange membrane and the pressure 
gradient by an electric field, it follows from the theory in the case of a single elec- 
trolyte 2-6 that 

1-,./r, = 0.5 (12) 

The evaluation of earlier measurements’ yields a value of 0.54 (instead of 0.5), while 
more recent measurementslo give a value of 0.49. 

PROBLEMS OF SUPERPOSITION OF FLUXES 

Comparing eqns. 6 and 7, we can express the isotonic osmosis by an electric 
field. Proceeding to the non-isotonic osmosis, it stems obvious that the following 
equation results: 

jL/q = - Dll grad (,& + VI. P) - z2c cF F grad v (13) 
I I 

which gives a superposition of the water flux arising from the osmotic difference 
d&i + VL P) (see eqn. 2) and the electric field (eqns. 6 and 7). This equation cannot 
be correct, however, as the first term on the right-hand side is related to a reversible 
process concerning a semipermeable membrane and the second term is related to an 
irreversible process concerning a permeable membrane. The correct equation results 
from the variational principles. In this paper, we will try to obtain the correct equa- 
tion by means of phenomenological considerations. 

CONSTRAlNT RESULTING FROM THE MATRIX 

It is the usual method in the theory of osmotic pressure to replace the osmotic 
difference, dy & by the concentration difference of the solute with the aid of the Gibbs- 
Duhem equation. Using this method for a permeable membrane, we obtain, in the 
case of a single counter ion 1, the equation 

4% 
cL dc,-. 

dpw dpwl,., 
- grad CL = -cl r J-=- grad cIF - c~,> dc grad cID 

1F 1D 
(14) 

In the following discussion, ii:_ represents the chemical potential of the solvent in- 
side any membrane. The first term on the right-hand side includes the gradient of the 
counter ions, which must be zero in a membrane. In order to understand this very 
important fact, we must take into consideration that the concentration of the fixed 
ions in a membrane is constant, as is the concentration of the counter ions. Bearing 
in mind that the gradient implies differentiation and as the differentiation of a con- 
stant always results in zero, the term involving the fixed ions and the counter ions must 
also become zero in eqn. 14. 

AN OSMOTIC PARADOX 

At both boundaries of the membrane, the condition ,iif = pl must be satis- 
fied. From this it follows that dp: = dp E. But if the outside difference dp: is high and 
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as a result of a low concentration of the Donnan ions the difference dp: is small, the 
latter condition cannot be satisfied and we have dpz < dpl. This paradox is an ap- 
parent one, as we have not paid attention to an essential condition which can be ex- 
plained as follows. In contact with pure water, a membrane adsorbs water until the 
chemical potential of the water inside the membrane is equal to the chemical potential 
of the pure water. Taking the membrane for a simple polyelectrolyte, this state would 
first be attained at infinite dilution. Indeed, the non-cross-linked polystyrenesulphonic 
acid exhibits this behaviour. When divinylbenzene is added to the latter, a cross- 
linked gel is formed. The matrix of the membrane resulting from this reaction opposes 
a constraint P, against the infiltrating water. The reaction against this stress is the 
swelling pressure P,, which acts on the .water according to the equation 

P, = - P, (1% 

and increases the chemical potential of the latter according to eqn. I. Hence the para- 
dox mentioned above is resolved, as the phase equilibrium between both boundaries 
of the strip dx and the solutions must be written as 

(16) 

If there is an outside(hydrostatic) pressure gradient grad P, the expression V,dP must 
be added to both sides of eqn. 16. In contrast to an outside pressure gradient, a 
gradient of the swelling pressure does not perform any work, as P, and P, are 
constraining forces. It follows from these considerations that eqn. 13 is valid if we 
replace ,ut by ,iiL. O The latter value results from the concentration gradient of the 
Donnan ions according to eqn. 14. 

ILLUSTRATION OF A PERMEABLE MEMBRANE 

In Fig. 2, curve A demonstrates the distribution of the concentration in an 
inactive membrane if the latter separates solutions of an electrolyte with different 
concentrations. This “normal’* distribution breaks down if the membrane becomes 
“active” and adsorbs the bulk of ions (in exchange for other ions that diffuse away), 
as represented by curve C. 

The remaining Donnan ions form a normal distribution (curve D). Curves B 
and E represent the osmotic gradients coordinated to curve A and D. The counter 
ions show a constant distribution of the concentration and do not give rise to any 
gradient. 

OSMOTIC LAWS CONCERNING SEMIPERMEABLE AND PERMEABLE MEMBRANES 

In order to emphasize the difference between a semipermeable and a permeable 
membrane, we can state that if a membrane separates two solutions showing an os- 
motic difference dpL, O the following effects take place in a closed osmotic cell: 

(1) If the membrane is semipermeable, a hydrostatic pressure difference dP, 
given by eqn. 3 and called the osmotic pressure takes place in the equilibrium state. 
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Fig. 2. Osmotic bchaviour of semipermeable and permeable membranes. A. normal gradient d/c,/dx 
of the ions; B, osmotic gradient djc,./dx in a scmipcrmcable membrane: C, gradient of the fixed ions 
d,tcp/dx in a permeable membrane: D. gradient d/i,/dx of Donnan ions in a pcrmeablc membrane: 
E, intrinsic osmotic gradient d/i,_/dx in a permeable membrane. 

(2) Replacing the semipermeable membrane by a permeable membrane, a 
hydrostatic pressure difference dP is present in the stationary state. This pressure re- 
presents the apparent osmotic pressure and is given by the equation 

grad PO = -cL grad ,& - cF F grad v (17) 

which follows from eqn. I3 if we write ,%i instead ofp,?, equatej, to zero and take into 
consideration eqn. 9. The first term on the right-hand side of eqn. 17 represents the 
intrinsic osmotic difference which results from the gradient of the Donnan ions ac- 
cording to eqn. 14. From this arises the intrinsic osmotic 

grad P, = -cl_ grad & = CID grad PlD 

The second term in eqn. 17 represents the electroosmotic 
to the electroosmotic pressure difference 

grad P,, = 1 ~Rl.ji 
2q 

The right-hand side follows from eqns. 7. 

pressure 

(18) 

potential, which gives rise 

(19) 

(3) In all instances, the chemical potential of the water passes the boundaries 
of the membrane as stated by the condition 

d(& + V,P) = d(,$_ + Vt J’, + VL PI (20) 

(4) In the case of a semipermeable membrane, dP, vanishes and the intrinsic 
osmotic difference dp! is equal to the outside osmotic difference. 

(5) In the case of a permeable membrane, the outside osmotic difference per- 
forms a jump, which is given by the equation 

d&. - d& = VL dP, (21) 
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We call this effect the osmotic jump. It results from the fact that the constraining 
force dP, represents a reaction against the outside osmotic difference dpt, which 
reduces the latter to the inside osmotic difference, dpi. 

CONCLbSION 

In this paper we have considered a particular aspect in the field of osmosis, in 
as much as we have restricted ourselves to a “strip dx” of a membrane. The extension 
to a membrane of finite thickness is a further problem of the calculus of variations. 
The solution which we have found represents a function of the concentration on the 
boundaries of the membrane and not a function of the gradients, as is the case in the 
strip dx. 
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